Lambang Bilangan Bulat
Lambang bilangan bulat bentuk panjangnya merupakan hasil penjumlahan dari perkalian bilangan dengan pemangkatan bilangan 10.
Contoh:
2.345 = 2.000 + 300 + 40 + 5
= 2x103 + 3 x102 + 4 x101 + 5 x 100
2.345 = 2 ribuan + 3 ratusan + 4 puluhan + 5 satuan
Contoh:
2.345 = 2.000 + 300 + 40 + 5
= 2x103 + 3 x102 + 4 x101 + 5 x 100
2.345 = 2 ribuan + 3 ratusan + 4 puluhan + 5 satuan
Menentukan Nilai Tempat Bilangan
Contoh:
1) 53.451
Dibaca lima puluh tiga ribu empat ratus lima puluh satu.
2) 212.583
Dibaca dua ratus dua belas ribu lima ratus delapan puluh tiga
3) 2.523.459
Dibaca dua juta lima ratus dua puluh tiga ribu empat ratus lima puluh sembilan
1) 53.451
Dibaca lima puluh tiga ribu empat ratus lima puluh satu.
2) 212.583
Dibaca dua ratus dua belas ribu lima ratus delapan puluh tiga
3) 2.523.459
Dibaca dua juta lima ratus dua puluh tiga ribu empat ratus lima puluh sembilan
Himpunan Bilangan Bulat
Bilangan bulat adalah bilangan yang terdiri dari:
a Bilangan bulat positif (bilangan asli)
b Bilangan nol
c. Bilangan bulat negatif (lawan bilangan asli)
a Bilangan bulat positif (bilangan asli)
b Bilangan nol
c. Bilangan bulat negatif (lawan bilangan asli)
Sifat Perkalian dari Urutan Bilangan Bulat
a. Jika a > b, dan c bilangan bulat positif, maka a x c > b x c
jika a < b, dan c bilangan bulat positif, maka a x c < b x c
Contoh
1) 6 > 2 dan 6 bilangan bulat positif, maka 6x6 > 2x6
2) 5 < 7 dan 3 bilangan bulat positif, maka 5x3 < 7x3
jika a < b, dan c bilangan bulat positif, maka a x c < b x c
Contoh
1) 6 > 2 dan 6 bilangan bulat positif, maka 6x6 > 2x6
2) 5 < 7 dan 3 bilangan bulat positif, maka 5x3 < 7x3
b. Jika a > b, dan c bilangan bulat negatif, maka axc < bxc
Jika a < b, dan c bilangan bulat negatif, maka axc > bxc
Contoh
1) -2 >-6 dan -3 (bilangan bulat negatif), maka -2 x (-3) < -6 x (-3)
2) -3 < 2 dan -5 (bilangan bulat negatif), maka -3 x (-5) > 2x(-5)
Jika a < b, dan c bilangan bulat negatif, maka axc > bxc
Contoh
1) -2 >-6 dan -3 (bilangan bulat negatif), maka -2 x (-3) < -6 x (-3)
2) -3 < 2 dan -5 (bilangan bulat negatif), maka -3 x (-5) > 2x(-5)
c. Jika a > b atau a < b, dan c adalah bilangan nol, maka axc = bxc = 0
Contoh
1) 4 > -2, maka 4 x 0 = -2 x 0 = 0
2) 3 < 5, maka 3 x 0 = 5 x 0 = 0
Contoh
1) 4 > -2, maka 4 x 0 = -2 x 0 = 0
2) 3 < 5, maka 3 x 0 = 5 x 0 = 0
Lawan bilangan bulat
a. Setiap bilangan bulat mempunyai tepat satu lawan yang juga merupakan bilangan bulat
b. Dua bilangan bulat dikatakan berlawanan, apabila dijumlahkan menghasilkan nilai nol.
a + (-a) = 0
Contoh
1) Lawan dari 4 adalah -4, sebab 4 + (-4) = 0
2) Lawan dari -7 adalah 7, sebab -7 + 7 = 0
3) Lawan dari 0 adalah 0, sebab 0 + 0 = 0
b. Dua bilangan bulat dikatakan berlawanan, apabila dijumlahkan menghasilkan nilai nol.
a + (-a) = 0
Contoh
1) Lawan dari 4 adalah -4, sebab 4 + (-4) = 0
2) Lawan dari -7 adalah 7, sebab -7 + 7 = 0
3) Lawan dari 0 adalah 0, sebab 0 + 0 = 0
Operasi bilangan bulat
Penjumlahan dan pengurangan bilangan bulat
d. Menjumlahkan bilangan bulat negatif dengan bilangan positif.
Contoh
-6 + 8 = 2, digambarkan pada garis bilangan.
Contoh
-6 + 8 = 2, digambarkan pada garis bilangan.
Perkalian Bilangan Bulat
Perkalian adalah penjumlahan berulang sebanyak bilangan yang dikalikan.
Contoh:
2 x 3 - 3 + 3 = 6
Contoh:
2 x 3 - 3 + 3 = 6
Perhatikan gambar di bawah ini, ya!
Sifat-sifat perkalian suatu bilangan
Contoh:
1) 4 x 5 = 5 + 5 + 5 + 5 = 20
2) 7 x 8 = 56
3) 12 x 15 = 180
b Perkalian bilangan positif dengan bilangan negatif, hasilnya negatif.
Contoh:
1) 4 x (-5) = (-5) + (-5) +(-5) +(-5) = -20
2) 7 x (-8) = -56
3) 12 x (-15) = -180
c. Perkalian bilangan negatif dengan bilangan positif, hasilnya negatif.
Contoh:
1) -4 x 5 = -(5 + 5 + 5 + 5) = -20.
2) -7 x 8 = -56
3) -12x 15 = -180
d. Perkalian bilangan negatif dengan bilangan negatif, hasilnya positif.
Contoh:
1) -4 x (-5) = -[-5 + (-5) + (-5) + (-5)] = -[-20] = 20
2) -7 x (-8) = 56
3) -12 x (-15) = 180
Kesimpulan:
Pembagian bilangan bulat
Pembagian merupakan operasi kebalikan dari perkalian
Contoh
12 : 4 = 3, karena 4 x 3 = 12 atau 3 x 4 = 12
42 : 7 = 6, karena 7 x 6 = 42 atau 6 x 7 = 42
Contoh
12 : 4 = 3, karena 4 x 3 = 12 atau 3 x 4 = 12
42 : 7 = 6, karena 7 x 6 = 42 atau 6 x 7 = 42
Sifat-sifat pembagian bilangan bulat
a. Pembagian bilangan positif dengan bilangan positif, hasilnya positif
Contoh
1) 63 : 7 = 9
2) 143 : 11 = 13
b. Pembagian bilangan positif dengan bilangan negatif, hasilnya negatif
Contoh:
1) 63 : (-9) = -7
2) 72 : (-6) = -12
c. Pembagian bilangan negatif dengan bilangan positif, hasilnya negatif
Contoh:
1) -63 : 7 = -9
2) -120 : 10 = -12
d. Pembagian bilangan negatif dengan bilangan negatif, hasilnya positif.
Contoh:
1) -72 : (-8) = 9
2) -120 : (-12) = 10
Menggunakan Sifat Operasi Hitung Bilangan Bulat
Sifat komutatif
Sifat komutatif (pertukaran) pada penjumlahan dan perkalian.
a + b = b + a
a x b = b x a, berlaku untuk semua bilangan bulat
a + b = b + a
a x b = b x a, berlaku untuk semua bilangan bulat
Contoh:
1) 2 + 4 = 4 + 2 = 6
2) 3 + 5 = 5 + 3 = 8
3) 4 x 2 = 2 x 4 = 8
4) 3 x 2 = 2 x 3 = 6
Sifat asosiatif
Sifat asosiatif (pengelompokan) pada penjumlahan dan perkalian.
(a + b) + c = a + (b+c)
(a x b) x c = a x (bxc), berlaku untuk semua bilangan bulat
(a + b) + c = a + (b+c)
(a x b) x c = a x (bxc), berlaku untuk semua bilangan bulat
Contoh:
1) (2+4) + 6 = 2 + (4+6) = 12
2) (3+6) + 7 = 3 + (6+7) = 16
3) (3x2) x 4 = 3 x (2x4) = 24
4) (3x5) x 2 = 3 x (5x2) = 30
1) (2+4) + 6 = 2 + (4+6) = 12
2) (3+6) + 7 = 3 + (6+7) = 16
3) (3x2) x 4 = 3 x (2x4) = 24
4) (3x5) x 2 = 3 x (5x2) = 30
Sifat distributif (penyebaran)
a x (b + c) = (a x b) + (a x c), yang berlaku untuk semua bilangan bulat.
Contoh
1) 4 x (5 + 2) = (4 x 5) + (4 x 2) = 28
2) 5 x (7 + 3) = (5 x 7) + (5 x 3) = 50
1) 4 x (5 + 2) = (4 x 5) + (4 x 2) = 28
2) 5 x (7 + 3) = (5 x 7) + (5 x 3) = 50
Operasi Campuran
Aturan dalam mengerjakan operasi campuran adalah sebagai berikut.
1 .Operasi dalam tanda kurung dikerjakan terlebih dahulu.
2. Perkalian dan pembagian adalah setara, yang ditemui terlebih dahulu dikerjakan terlebih dahulu.
3. Penjumlahan dan pengurangan adalah setara, yang ditemui terlebih dahulu dikerjakan terlebih dahulu.
4. Perkalian atau pembagian dikerjakan lebih dahulu daripada penjumlahan atau
pengurangan.
1 .Operasi dalam tanda kurung dikerjakan terlebih dahulu.
2. Perkalian dan pembagian adalah setara, yang ditemui terlebih dahulu dikerjakan terlebih dahulu.
3. Penjumlahan dan pengurangan adalah setara, yang ditemui terlebih dahulu dikerjakan terlebih dahulu.
4. Perkalian atau pembagian dikerjakan lebih dahulu daripada penjumlahan atau
pengurangan.
Contoh
1. a. 20 + 30 – 12 = 50 – 12 = 38
b. 40 – 10 - 5 = 30 – 5 = 25
c. 40 - (10 - 5) = 40 – 5 = 35
2. a. 600 : 2O : 5 = 30 : 5 = 6
b. 600 : (20 : 5) = 600 : 4 = 150
c. 5 x 8 : 4 = 40 : 4 = 10
3. a. 5 x (8 + 4) = 5 x 12 = 60
b. 5 x 8 -4 = 40 – 4 = 36
c. 5 x (8 – 4) = 5 x 4 = 20
Menentukan FPB dan KPK Beberapa Bilangan Bulat dengan Faktor Prima
FPB dan KPK
Setiap bilangan dapat ditulis sebagai hasil kali faktor-faktor primanya. Kita mulai dengan membagi bilangan tersebut dengan bilangan prima 2, 3, 5, 7, 11, 13 dan seterusnya.
Contoh :
Tuliskan faktorisasi prima dari 18!
Jawab: Mulailah dengan membagi 18 dengan 2, 3, 5 dan seterusnya melalui pohon faktor berikut :
Jadi, faktorisasi prima dari 18 = 2 x 3 x 3 = 2 x 32Setiap bilangan dapat ditulis sebagai hasil kali faktor-faktor primanya. Kita mulai dengan membagi bilangan tersebut dengan bilangan prima 2, 3, 5, 7, 11, 13 dan seterusnya.
Contoh :
Tuliskan faktorisasi prima dari 18!
Jawab: Mulailah dengan membagi 18 dengan 2, 3, 5 dan seterusnya melalui pohon faktor berikut :
Contoh :
Tuliskan faktorisasi prima dari 180!
Tuliskan faktorisasi prima dari 180!
Kita dapat mencari FPB dan KPK beberapa bilangan dengan menentukan faktor-faktor primanya.
Contoh :
Carilah FPB dan KPK dari 40 dan 60
Jawab : Bagilah kedua bilangan dengan bilangan prima mulai dari 2, 3, 5 dan seterusny, secara bersamaan seperti berikut ini.
Contoh :
Carilah FPB dan KPK dari 40 dan 60
Jawab : Bagilah kedua bilangan dengan bilangan prima mulai dari 2, 3, 5 dan seterusny, secara bersamaan seperti berikut ini.
FPB dicari dari hasil kali bilangan prima di kiri (dilingkari) yang habis membagi kedua bilangan. Jadi, FPB dari 40 dan 60 adalah 2 x 2 x 5 = 4 x 5 = 20
KPK dicari dari hasil kali semua bilangan prima di kiri (termasuk yang tidak dilingkari). Jadi, KPK dari 40 dan 60 adalah 2 x 2 x 2 x 3 x 5 = 4 x 6 x 5 = 4 x 30 = 120.
Pangkat Tiga dan Akar Pangkat Tiga
Perpangkatan merupakan perkalian berulang
Contoh :
22 = 2 x 2 = 4
33 = 3 x 3 x 3 = 9 x 3 = 27
Contoh :
22 = 2 x 2 = 4
33 = 3 x 3 x 3 = 9 x 3 = 27
Operasi akar pangkat tiga dapat dijelaskan sebagai berikut:
Bilangan berapakah apabila dipangkatkan tiga hasilnya 8? Jawabannya adalah 2. Dalam hal ini, kita mencari akar pangkat tiga dari delapan yang kita tulis 3√8 = 2 (dibaca akar pangkat 3 dari 8 adalah 2).
Contoh:
3√27 = 3, karena 3 x 3 x 3 = 9 x 3 = 27
Bilangan berapakah apabila dipangkatkan tiga hasilnya 8? Jawabannya adalah 2. Dalam hal ini, kita mencari akar pangkat tiga dari delapan yang kita tulis 3√8 = 2 (dibaca akar pangkat 3 dari 8 adalah 2).
Contoh:
3√27 = 3, karena 3 x 3 x 3 = 9 x 3 = 27
Untuk mencari akar pangkat 3 dari bilangan yang cukup besar, dapat dicari dengan bantuan bilangan pangkat 3.
13 = 1
23 = 8
Operasi Hitung Campuran dengan Bilangan Berpangkat
Aturan dalam melakukan operasi hitung campuran adalah sebagai berikut.1. Operasi dalam tanda kurung, selalu dikerjakan terlebih dahulu.
2. Perpangkatan atau penarikan akar dikerjakan terlebih dahulu daripada perkalian atau pembagian.
3. Perkalian dan pembagian adalah setara, yang ditemui terlebih dahulu dikerjakan terlebih dahulu.
4. Penjumlahan dan pengurangan adalah setara, yang ditemui terlebih dahulu
dikerjakan terlebih dahulu.
5. Perkalian atau pembagian dikerjakan lebih dahulu daripada penjumlahan atau pengurangan.
Contoh:
1. 53 – 23 = 125 – 8 = 117
2. 33 x 43 = 27 x 64 = 1.728
1. 53 – 23 = 125 – 8 = 117
2. 33 x 43 = 27 x 64 = 1.728
Tidak ada komentar:
Posting Komentar